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SUMMARY 
A numerical method based on the finite element method is presented for simulating the two-dimensional transient 
motion of a viscous liquid with free surfaces. For ease of numerical treatment of the free surface expressed by a 
multiple-valued function, the marker particle method is employed. Numerous virtual particles are spread over all 
regions occupied by liquid. They move about on a fixed finite element mesh with the liquid velocity at their 
positions. These particles contribute nothing to the dynamics of the liquid and only serve as markers of liquid 
regions. The velocity field within liquid regions is calculated by solving the Navier-Stokes equations and the 
equation of continuity by the finite element method based on quadrilateral elements. A detailed discussion is given 
of the methodological problems arising in the implementation of the marker particle method on an unstructured 
finite element mesh and of the solutions to these problems. The proposed method is demonstrated on three sample 
problems: the broken dam problem, the impact of a falling liquid drop on a still liquid and the entry of a rigid 
block into water. Good agreement has been obtained in the comparison of the present numerical results with 
available experimental data. 
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1. INTRODUCTION 

The primary interest of the present work is to develop an effective method for numerically simulating 
the transient motion of a liquid with free surfaces. There are two approaches in the numerical analysis 
of free surface flow problems: the Langrangian method and the Eulerian method. In the former method, 
the liquid regions are subdivided into finite difference or finite element meshes and each cell or 
element is moved and deformed according to the liquid motion. Therefore the mesh zone is identified 
with the liquid region for all time. The governing equations of flow are simple and easy to solve in the 
Lagrangian formulation, since the momentum equations have no non-linear advection terms. However, 
a rezoning or remeshing procedure is needed to avoid the serious distortion of cells and one must have 
a fast and fully automatic mesh generator for this procedure. Recently the arbitrary Lagrangian- 
Eulerian (ALE) method has often been used.’-’ In this method, to avoid the rapid distortion of cells, 
each cell can be moved with an arbitrary velocity which is independent of the liquid velocity. However, 
rezoning is still needed even in the ALE method. 

On the other hand, a mesh remains fixed in the Eulerian method and liquid regions change in shape 
and location on the mesh. Therefore the identity between the mesh zone and the liquid region is not 
maintained. Then an additional method is needed to recognize the area occupied by liquid in the 
Eulerian formulation. Several methods have been used for this purpose, such as the height function 
methoe6 the volume-of-fluid (VOF) method’ and the marker particle method.* 
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In the height function method a free surface is represented by its vertical height measured from a 
reference line and a liquid region is recognized as the region between the free surface and the base of a 
solution domain. This method is very easy to implement and requires only a one-dimensional storage 
array to record the discrete value of the free surface. However, since the surface height is expressed by 
a single-valued function of position, the method does not work for free surfaces expressed by multiple- 
valued functions, as exemplified by bubbles, liquid droplets, o v e m i n g  water waves and so on. 

The VOF method uses an auxiliary function F whose value is unity at any point in the liquid and 
zero elsewhere. The time evolution of F is governed by the pure advection equation 

aF 
- + u ~ F , ~  = 0, 
at 

where ui is the velocity component of the liquid. Usually the function F is discretized so as to be 
uniform within each cell and the value of F in a cell represents the fractional volume of liquid in the 
cell. A unit value of F corresponds to a cell full of liquid, while a zero value corresponds to a cell 
containing no liquid. A value of F between zero and unity indicates that a cell contains a free surface. 
Although the storage requirements increase in the VOF method in comparison with the height function 
method, only one storage word is required for each cell. The VOF method can be applied to the 
dynamics of multiple-valued surfaces. 

The marker particle method uses virtual particles to represent liquid regions. The particles are spread 
over all regions occupied by liquid. They have no quantifiable properties such as mass or energy and 
serve only as ‘markers’ showing liquid regions. The computational procedure is very simple. First the 
governing flow equations are solved on the cells containing particles and the velocity field in the liquid 
is determined. Next each particle is moved according to the liquid velocity at its position. This 
procedure is repeated by advancing the time by At. The location and profile of a free surface are 
recognized by observing a computer plot of the marker distribution. Thus the marker particle method 
eliminates logic problems associated with the calculation of free surface locations and can be easily 
applied to problems with multiple-valued free boundaries. Furthermore, it is readily extensible to three- 
dimensional computations. In comparison with the two previous methods, however, storage 
requirements increase considerably because of the increase in the number of particle co-ordinates 
that must be recorded. Additional computational time is also required to move all particles. However, 
these requirements can be tolerated because of the recent increase in performance of digital computers. 

If the Lagrangian approach is adopted, one must prepare an automatic mesh generator for the 
rezoning of a solution domain. Although several algorithms of mesh generation have been proposed 
for restricted purposes such as the hot-forming process’ and metal-casting flow,” no fully automatic 
and general-purpose mesh generator can be found to date. Furthermore, the rezoning process will be 
more complicated in three-dimensional computations. Therefore we will employ the Eulerian approach 
for the present work. Among various techniques representing liquid regions on an Eulerian mesh, some 
of which are briefly reviewed above, we have chosen the marker particle method. Although this 
method has some disadvantages such as the vague definition of free surface and the resultant difficulty 
in including surface tension effects, it has attractive advantages such as simplicity of the algorithm, the 
extensibility to three-dmensional computations and wide applicability. 

A successll example of the marker particle method can be found in the marker-and-cell (MAC) 
method.* It is based on the finite difference method and fhdamentally the solution domain and 
obstacles in the domain are required to be rectangular. In the subsequent developments of the original 
MAC method by many resear~hers,”-’~ Viecelli14 presented the extended MAC method, named 
ABMAC, which is applicable to the calculation of free surface flow in arbitrarily shaped domains. 
However, the treatment of cells in the vicinity of curved wall boundaries and the calculation of 
momentum and pressure in those cells are troublesome in ABMAC. Furthermore, it employs the 
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inviscid boundary condition on a free surface. Here we propose a new technique by combining the 
marker particle method with the finite element method (FEM). By employing the FEM, it becomes 
quite easy to generalize the treatment of a curved wall boundary and to introduce the viscous stress 
condition on a free surface. In the present paper we describe the details of the proposed solution 
technique. Although the present method is more generalized than ABMAC, the present work is 
influenced by ABMAC in the basic strategy of computation. 

2. DESCRIPTION OF A FREE SURFACE PROBLEM 

As an example of the mathematical formulation of a free surface problem we consider the two- 
dimensional motion of a liquid in a container as illustrated in Figure 1. Let R be the liquid region in the 
containerais region is bounded by two types of boundaries: a free surface r, and a wetted part of the 
wall of the container, Tz. The flow of liquid is assumed to be laminar. Then the liquid motion under 
gravity is governed by the Navier-Stokes equations 

and the equation of continuity 

uiqi = 0 in R, (2) 

where I is the time, xi ( i  = 1, 2) are rectangular Cartesian co-ordinates, ui is the velocity component in 
the xi-direction, 1; is the xi-component of the gravitational force per unit mass of liquid and cii is the 
stress tensor. For a Newtonian fluid the following constitutive equation applies: 

6.. Y = -p6, + V ( U i J  + U j , J ,  (3 1 
where p is the pressure per unit density and v is the coefficient of kinematic viscosity. 

On the free surface boundary the equilibrium condition of stress, 

u . n . = O  Y J  o n r , ,  (4) 

is imposed, where ni is the xi-component of the unit outward vector normal to the boundary. In the 
derivation of equation (4) the pressure of the gas in the container is assumed to be zero and the surface 
tension of the liquid is neglected. The wall of the container is assumed to be impermeable. Then the 
following free slip condition is applied to the boundary Tz: 

uini = aiinitj = 0 on r2, ( 5 )  

o.xI 
Figure I .  Liquid with a fm surface in a two-dimensiod container 
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where ti is the x,-component of the unit vector tangential to the boundary. For the case of a viscous fluid 
the no-slip condition may be desirable. However, owing to the finite mesh size, an unnecessarily large 
boundary layer is created using a numerical no-slip condition. Therefore the free slip condition is 
preferable for the present calculation. 

The initial condition for equation (1) is given by specifying the velocity field which satisfies 
equation (2) at the initial state. 

3. FINITE ELEMENT FORMULATION 

3. I .  Spatial and temporal discretization 

Equations (1) and (2) are discretized in space by using the Galerkin FEM based on quadrilateral 
elements. The velocity is defined at four vertices of an element and its distribution in the element is 
approximated by a bilinear polynomial. The pressure node is located at the centroid of an element and 
the pressure is assumed to be uniform in the element. Thus the semidiscretized equations are derived as 

MU + [A(U) + K]U - HP - F = 0, (6) 

(7) T h,u, = 0 (e = 1,2 , .  . . , NE),  

where U and P are vectors of nodal values of velocity and pressure respectively; M is the lumped mass 
matrix, A, K and H are advection, diffusion and pressure gradient matrices respectively, F is the vector 
of gravitational force and 0 is a null vector. The superposed dot of U denotes Eulerian time 
differentiation. The area integration for evaluating the matrices My A, K and H is carried out 
analytically." The boundary condition (4) is taken into account as a natural boundary condition when 
the weak form of equation (1) is derived. The numerical way of introducing the free slip condition ( 5 )  
into equation (6) can be found in Reference 16. Equation (7) represents the local mass conservation in 
an element 0,. The subscript e refers to the element Q, and NE denotes the total number of elements. 
The row vector h: corresponds to the divergence operator and u, denotes the vector of nodal velocity 
of the element a,. 

The time axis is divided into a set of segments with short and uniform length At and the calculation 
is progressed by advancing the time by Ar. In a typical time interval between t"=nAt and 
t" + ' = (n + l)Ar, equation (6) is discretized in time as 

- MU" + At([A(U") + K]U" - HI'"'' - F} = 0, Mu"+1 (8) 
where superscripts n and n +  1 refer to the time instants f" and PI respectively. The equation of 
continuity (7) is rewritten as 

h:u:+' = 0 (e = 1,2, .  . . , NE). (9) 

(10) 

(1 1) 

For convenience in the subsequent description, equation (8) is simplified as 
Un+l - AtM-'Hp+' - Qn = 0, 

where 

Q" = U" - AtM-I ([A(U") + K]U" - F). 

Our next task is to calculate Un+' and Pn+' satisfying equations (9) and (1 0) with the known U" and 
P". For this purpose a new type of element-by-element (EBE) time-stepping method is constructed by 
modifying Chorin's method.17 The details are described in the next subsection. 
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3.2. EBE time-stepping procedure. 

The advancement of the flow field variables in a time step is carried out in two stages. In the first 
stage the velocity is advanced by using the previous state of the flow field. However, this explicit time 
advancement does not necessarily lead to a velocity field with zero divergence. Thus in the second 
stage the velocity is corrected so as to ensure mass conservation. This correction is made by adjusting 
the pressure of each element in such a way that the local divergence of velocity in an element should 
vanish. A change of velocity in an element will affect its neighbouring elements and this pressure 
adjustment must be performed in an iterative manner until all elements attain simultaneously zero 
divergence of velocity. 

First the velocity at time tn+' is estimated by 

fJ'+' = AtM-' HI"' + q, (12) 

which is obtained by replacing Pn+' with P" in equation (10). Since the velocity thus calculated does 
not necessarily satisfy equation (9), it is labelled by a tilde. 

Next the above tilded velocity is corrected by iterative calculations so as to ensure mass 
conservation. Consider the (k+ 1)th stage of iteration in which the (k+ 1)th approximations of Un+' 
and P"+' are calculated using the known kth approximations. The (k+ 1)th stage starts from the 
calculation of the local velocity divergence DLk) per unit area in an element 0,. It is evaluated by 

where A, is the area of the element and the superscript k denotes the kth a roximation. The zeroth 
approximations of velocity and pressure are given as u,t(") = 6:+' andp:'") = respectively. For 
simplicity of expression the superscript n + 1 showing the time level will be omitted in the following. 

If the magnitude of IDLk'I is less than some prescribed small value E ,  the flow is considered locally 
incompressible and no adjustment is made. If the magnitude exceeds E ,  the pressure in Re is adjusted as 

The pressure change is computed by 

ApLk) = -,@k) e g  (15) 

where I, is a positive coefficient which depends on the element sue and At. The expression for A, is 
derived later in this subsection. The pressure change affects the local velocity field in Qe and the nodal 
value of velocity is updated as 

(16) ,,a+') = u, (4 + Atm;' h,ApLk), 

where mi'  is an 8 x 8 submatrix of M-' whose elements correspond to four nodes of 0,. 
A series of calculations given by equations (1 3H16) in the (k + 1)th stage proceeds element-by- 

element and the iterative process is repeated until no element has a magnitude of IDe I greater than E .  

Thus the converged values of velocity and pressure are stored as the values at time P1. The time- 
stepping procedure in the interval between r" and r+' is summarized in Figure 2. In general the size of 
E varies according to the problem to be solved. We have used the value of for E in the present 
work. 

It should be noted here that I$+') is affected not only by Apa) but also by the pressure change in the 
elements adjacent to a,. Therefore, if a node is shared by four elements, the velocity at that node will 
be corrected four times during one iteration. 
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""+I = "m+l,(b+l) pntl = p + l . ( b t l )  

Figure 2. Time-stepping procedure in interval between f and Pf' 

The expression for the coefficient Ae can be derived as follows. Multiplication by h;f/A, on both 
sides of equation (16) yields 

The pressure adjustment by ApLk) is made so that D?"' should vanish. Then, putting DLk+') equal to 
zero in the above equation, we obtain the relation between ApP' and Or' as 

Thus, by identifying the coefficient of DLk' in equation (1 5) with that in equation (1 8), the expression 

is obtained. 

3.3. Stability ana.,sis of the iterative calculation 

In the finite difference  calculation^'^*'^ the right-hand side of equation (15) is multiplied by a 
relaxation parameter o to accelerate the iterative calculation. In this case w may not exceed two and the 
value of 1.7 is commonly used for a, though it is occasionally changed according to the problem to be 
solved. In this subsection, we consider a permissible range of o for the present finite element 
calculation through the stability analysis of the iterative procedure of the previous subsection. 
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First we show that the iterative calculation between the velocity correction and the pressure 
advancement is equivalent to the time-marching calculation for obtaining the steady state solution of 
an evolution equation of pressure. The differential form corresponding to equation (16) is expressed as 

n+l . (k+ l )  - - ui n+l . (k)  - ~~(b)':) (20) "i 

and the zeroth approximation u:+'.(~) is given by 

(21) n+1.(0) - - + 1  - n "i - 4 - qi - At$i. 

Here r# is defined as 

41 = "1 - A t [ $ ' q J  - ~ ( 4 ~  + $'JJ -A] (22) 

and is kept unchanged during the iteration. The recursive use of equation (20) under the condition (21) 
yields 

(23) n+I.(k) - n+l.(k)  
"i -4  - A t P , i  . 

At this time the relation 

l a  

is used. By substituting relation (23) into the differential expression 

corresponding to equation (15), we obtain 

or 

Here w is the aforementioned relaxation parameter and AT = w l A t .  If AT is considered as an increment 
on a pseudotime axis T ,  equation (27) can be interpreted as a temporally discretized equation of the 
following evolution equation of pressure: 

The advancement of T corresponds to an increase in the iteration number k. By continued iteration the 
value of apn+'/& decreases and one approaches the solution of the pressure Poisson equation, 

The stability of the iterative calculation for pressure updating is equivalent to that of equation (28). 
By applying the von Neumann stability analysis to the finite element representation of equation (28), 
we can obtain the result that one must choose AT as 
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on a uniform mesh pattern composed of rectangular elements of size Axl x Ax2. Since AT = w&At in 
the discrete form of equation (28) and Ae is given by equation (1 9), we can obtain the condition w < 2 
from the inequality (30). This is the same result as in the h i t e  difference formulation. In general the 
value of u depends on the problem to be solved. However, to save the effort of finding a suitable value 
of w according to the problem u is fixed as unity in the present work. 

4. COMPUTATIONAL PROCEDURE 

4. I. Algorithm 

The computational domain does not necessarily coincide with the region occupied by liquid in the 
present method. The computational domain is set so as to have enough extent to allow liquid to move 
around in the domain. In Figure 1, for example, the whole of the inside of the container is chosen as the 
computational domain. The computational domain is subdivided into finite elements and the mesh 
remains fixed for all time. A lot of massless particles are distributed over all liquid regions. In the 
numerical examples shown in the next section, for example, particles are arranged at the rate of 14 or 
18 per element at the initial state. Each particle is moved with the liquid velocity at its position. The 
particle contributes nothing to the dynamics of the liquid and only serves as a marker to represent a 
liquid region. We call such a virtual particle a marker. 

Consider a certain time instant t" and suppose that the marker hstribution and the velocity and 
pressure fields at that time are known. Then the simulation procedure is summarized as follows. 

1. As shown in Figure 3, all the finite elements are sorted into three types: empty element, surface 
element and fluid element. An empty element contains no markers. Surface and fluid elements 
contain several markers. A surface element adjoins one or more empty elements, while a fluid 
element is adjacent to no empty elements. The region composed of a group of surface and fluid 
elements is regarded as a liquid region and the polygonal line composed of the common sides of 
empty and surface elements represents an approximate free surface. 

2. The governing flow equations (1) and (2) are discretized on the surface and fluid elements to 
yield the matrix equations (6) and (7). By solving these equations, the velocity field is obtained. 

3. The velocity of a marker is calculated at its position by interpolating the nodal velocity of the 
element containing the marker. The marker is moved according to 

4" = 4 + uy+'At, (31) 
where ($,$) is the current marker position, (<",G") is the updated marker position and 
(4+', @') is the marker velocity. 

After the time has been advanced by At, the procedure is repeated from step 1. 

Figure 3. Classification of elements and definition of an approximate free surface 



TIME-DEPENDENT FREE SURFACE PROBLEMS 183 

4.2. Search of marker position 

To evaluate the velocity of a marker by interpolation, we have to find the element in which the 
marker is located. If the computational domain is subdivided into a uniform mesh composed of 
rectangular elements, the location of a marker with respect to the elements can be easily found. In the 
MAC method, for example, the integer numbers i and j  calculated by 

i =  integerpart of j = integer part of 

inform us that the marker with co-ordinates (x,, x2) is in the cell ij. Here Ax, and Ax2 are the cell width 
and height respectively. On an unstructured mesh, however, the search of marker position is not so 
easy. 

The method employed here is the application of the area co-ordinates used in the finite element 
formulation on triangular elements. Consider a typical quadrilateral element P1P2P3P* and a marker M 
as shown in Figure 4 and let (x,, x2) with superscripts M, 1,2,3 and 4 be the rectangular Cartesian co- 
ordinates of the marker and four vertices of the element respectively. Then the four quantities defined 
bY 

, (iJ,  k) = (1,2, 31, (2,3,4), (3,4, I) ,  (4, 1,2h (32) 

are calculated and their signs are checked. 
If all Ai (i = 1, 2, 3, 4) take positive values, the marker is judged to exist in the element as shown in 

Figure 4(a). In this case the value of Ai is equal to twice the area of the triangle AMPjPk. If the marker 
exists on the side of the element, one of the four quantities becomes zero. On the other hand, equation 
(32) produces a negative value for at least one quantity when the marker lies outside the element. In the 
case shown in Figure 4(b), for example, A1 takes a negative value. Then one must repeat the 
calculation of equation (32) in other elements until all Ai take non-negative values. 

To accelerate the search process, it is helpful to store the element number thus found against the 
marker number. Since a marker cannot travel more than one element size in one time step, the marker 
will be expected to remain in the previous element or to move to an element among eight elements 
adjacent to the previous element. Therefore it is sufficient to check nine elements at most per marker. 

(a) Marker M in the element (b) Marker M lying outside the element 

Figure 4. Search of marker position by checking signs of A,{i = 1, 2, 3, 4) 
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4.3. Velocity adjustment in surface elements 

Consider a certain empty element adjacent to surface elements at time f and suppose that several 
markers enter the empty element during the time interval between t" and P + l .  The typical situation is 
illustrated in Figure 5 .  The element receiving markers anew (a hatched element in Figure 5 )  is 
reclassified as a surface element and contributes to the assemblage of the matrix equations (6) and (7) 
at time P + l .  Such an element often has nodes at which the liquid velocity is not yet determined and 
consequently remains zero. Such a node is referred to as 'a newcomer node' hereafter and is shown by 
an open circle in Figure 5 .  Since the fluid is in motion, all the nodes on surface elements should have a 
non-zero value of velocity. Therefore a process to assign a non-zero value of velocity to a newcomer 
node is needed before the calculation of the tilded velocity by equation (1 2). The process of velocity 
assignment is summarized as follows. 

Calculate the average velocity of markers in each surface element with newcomer nodes. 
Estimate the velocity at a newcomer node by averaging the element velocity calculated in Step 1 
with an area-weighting scheme. Let us consider a sample case as shown in Figure 6, where a 
newcomer node P belongs to two surface elements 0, and SZ,. In these elements the average 
values of marker velocity, iif and iif, are computed, where superscripts a and b refer to the 
elements 0, and i l b  respectively. Then the estimated velocity at P, up, is calculated by 

where A,, for example, denotes the area of the element 0,. 
Correct the nodal velocity estimated in Step 2 so that mass conservation is ensured in each 
surface element. This correction is made in the same iterative manner as described in Section 3.2. 
The following series of calculations is done in each surface element with newcomer nodes and is 
repeated until local conservation of mass is attained: 
(a) calculate the local divergence of velocity by equation (13) 
(b) calculate the pressure change by equation (1 8) 
(c) update the element pressure by equation (14) 
(d) correct the nodal velocity by equation (1 6). 

The velocity correction in (d) is made only at newcomer nodes and velocities at other nodes 
remain unchanged during the computation of (a)-(d). 

[-I 7 1  
Figure 5 .  Appearance of newcomer nodes due to marker movement 
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Figure 6. Estimation of velocity at a newcomer node 

5.  NUMERICAL EXAMPLES 

5.1. A broken dam problem 

To verify the computational accuracy of the proposed method, the well-known broken dam problem 
is analysed and the numerical results are compared with available experimental data. A rectangular 
column of water is confined between two vertical walls and is at rest as shown in Figure 7. It is our task 
to calculate the collapse of the column under gravity after sudden removal of the right wall. The 
calculation is carried out for two cases with different relative column heights b/a  = 1 and 2, where a 
and b are the column width and height respectively. The rectangular computational domain of size 
6a x 3 . 7 5 ~  is subdivided into a uniform mesh of 96 elements in the horizontal direction and 60 
elements in the vertical direction. The initial marker density is 18 per element. The variables used in 
the computation are all nondimensionalized by choosing a as reference length and J(ga) as reference 
velocity, where g is the gravitational acceleration. The non-dimensional viscous coefficient 
v/[aJ(ga)], namely the reciprocal of the Reynolds number, is 3.05 x lo-' and the non-dimensional 
time increment AtJ(g/a) is taken as lop3. 

Figure 8 shows the computer plots of marker distributions and pressure contours at different time 
instants. The series of marker distributions shows a smooth motion of the water. In the pressure 
contours the top curve corresponds to p/ga  = 0-2 and the contour increment is 0.1. Since the pressure 
is discretized to be constant in an element, it is hard to plot the continuous contour line of zero 
pressure. 

In Section 4.3 the adjustment procedure for the velocity at a newcomer node of a surface element 
has been described. The calculation in Figure 8 includes this adjustment procedure. On the other hand, 
the computed result without velocity adjustment is shown in Figure 9. In this case the velocity at a 
newcomer node remains zero until the tilded velocity is calculated by equation (12). As a result, the 
computed marker distributions in Figure 9 show a curious behaviour of the water: the water front is 
rolled up as if there were a ghost barrier ahead of it. Therefore we might conclude that the procedure 

Computational domain I 1  

Ir"" 6a 

Figure 7. Computational model for broken dam problem 
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t@ = 0.5 

1.0 

1.5 

2.0 

Figure 8. Marker distributions (left) and pressure contours (right) at different time instants 

for velocity adjustment at newcomer nodes is important in the present marker particle method. This 
conclusion may hold true for other Eulerian methods, e.g. the VOF method, and the procedure 
described in Section 4.3 is also applicable to those Eulerian methods when they are used together with 
the FEM. 

Figure 10 shows the time histories of the water front location ( ( t )  and the water column height q(r). 
The open circles denote the experimental data of Martin and Moyce’’ and the full curves show the 
present numerical results. In Figure 10(b) the numerical results obtained on the coarser mesh of 
48 x 30 elements are also shown by broken curves. The difference in the computed results between 
the fine and coarse meshes is not very significant. The present numerical calculation yields satisfactory 
results which are very close to the experimental data. 

5.2. Splash of a falling liquid drop 

The next example is the impact of a liquid drop on a still liquid. A circular liquid drop falls towards 
the free surface of a liquid in a container as shown in Figure 11. Both liquids are assumed to have 
common material properties. The density is lo3 kg mP3 and the viscous coefficient is 5 x lo-’ Pa s. 
The computational region is subdivided into elements as shown in Figure 12. The total number of 
markers used is 23,434 and the initial marker density is 14 per element. The initial falling speed of the 
drop is 3.2 m s-’  and the time increment is set as lo-’ s. 

Figure 13 shows a series of marker distributions and corresponding pressure contours. The 
minimum pressure of the contour is 50 Pa and its increment is 50 Pa. In the last plot of the figure we 
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Figure 9. Marker distributions computed without velocity adjustment at newcomer nodes 

notice the collision of some markers with the side walls. They show a tendency to move along the wall 
after the collision. In laboratory experiments, however, the liquid spray will rebound from the wall. 
Such a rebound cannot be simulated in the present formulation, since the normal component of liquid 
velocity is fixed to be zero on the wall for all time. Therefore a detailed investigation will be needed for 
the mathematical modelling of the interaction between a liquid spray and a solid wall. 

5.3. Entty of a rigid block into water 

The third example concerns the low-velocity penetration of a falling rigid block into still water. This 
problem is closely related to ship slamming, seaplane landing, water entry of flying objects and so on. 

A rectangular block is used for the present computation. An illustrative drawing of the water entry of 
the block is shown in Figure 14. The block moves downwards so that its axis of symmetry is kept 
vertical. Since the flow pattern of the water becomes symmetrical, we shall consider hereafter only the 
right half of the liquid region. The rectangular Cartesian co-ordinate system shown in the figure is a 
moving one fixed to the block. The origin o is located at the centre of the impact surface of the block 
and the x2-axis coincides with the axis of symmetry and is directed upwards. The liquid region R is 
surrounded by four boundaries: the free surface rl, the block surface and axis of symmetry, Tz, and 
the artificial boundaries r3 and r,. The base boundary r3 is considered fixed to the co-ordinate 
system. In other words, this boundary will move downwards with the same speed as the falling speed 
of the block if one observes the phenomenon in an inertial co-ordinate system. 
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Figure 10. Comparison of computational and experimental time histories of water front location and water column height 

Figure 11. A liquid drop falling towards a still liquid surface in a container 
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Figure 12. Subdivision of computational domain into four-node elements 
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Figure 13. Marker distributions showing splash of a liquid drop (left) and corresponding pressure contours (right) 
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Figure 14. Computational model for water entry problem of a rigid block 

Let ui be the liquid velocity relative to the co-ordinate system. Then the momentum equation (1) is 
replaced by 

(34) 
hi Bt + ujuij = aiij +f; + Ai in R, 

where A&) denotes the x,+omponent of acceleration of the block. The boundary condition on TI is 
given by equation (4) and the free slip condition ( 5 )  is imposed on r2 and r4. The boundary condition 
on r3 is expressed as 

ui = -6,  (35) 
where K{t) is the xi-component of velocity of the block. 

Initially the liquid velocity is set as 

ui(xI, x2, 0) = - K(0) in R 
and the pressure in the liquid is given as 

p ( x l ,  x,, 0) : hydrostatic pressure in R. (37) 
Owing to the symmetry of the problem, the acceleration A 1 and the velocity Vl are identically zero. 

The vertical acceleration A;" at time In+' is calculated by using the equation of motion of the block 
as 

Fn+ 1 

g ,  (38) A"+' = 2 - ' MB 

where MB is the mass of the block, F2 is the x2-component of pressure drag and g is the gravitational 
acceleration. The vertical velocity V2 and the penetrating distance H of the block measured downwards 
from the still free surface are computed by the equations 

At v;+l = V; + 1 (A;+' + A ; ) ,  (39) 

At 
(40) 

The numerical calculation is carried out for two cases with different block masses and the results are 
compared with available experimental data. The block size and some computational conditions are 
summarized in Table I. 

H"+I = H" - - (V"+l 2 2 + G). 
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Table I. Computational conditions for water entry problem of a rigid block 

7.6 cm 

Block size 

mass of block 102.2 g 153 g 

Initial impact velocity 

Size of initial liquid region 

Initial number of markers 

- 33 cm s-' - 30 cm s-l 

57 cm x 23 cm 

15920 (1 8 per element) 

Time increments 5 x 1 0 - ~  4 x lor3 

The finite element mesh pattern is shown in Figure 15. Figure 16 shows the marker distributions and 
pressure contours at different time instants. The minimum pressure of the contour is 100 Pa and its 
increment is 100 Pa. The initial number of markers is given in Table I and additional markers are 
entered into the liquid region through the boundary r3 according to the magnitude of the velocity V2 
every time step. 

Figure 17 shows the time histories of three quantities: the penetration distance of the block, H(t), the 
acceleration of the block, A2(t), and the pressure acting at the origin 0. Open circles denote the present 
computed results and free curves represent the experimental data of Cheng and Leland.20 The 

Httf I I I I I 1 I I I I I I I I I I f I I I : iH : I I : I : 1 1 I 1 I I IfH 

Figure IS. Finite element subdivision of computational domain 
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Figure 16. Marker distributions (left) and pressure contours (right) at differeat time instants (mass of block, 102.2 g) 

agreement between the computational and experimental results is satisfactory in every comparison 
except for the peak value of pressure and its appearance time. 

6. CONCLUDING REMARKS 

The finite element method has been applied to the numerical simulation of the dynamic behaviour of a 
liquid with free surfaces. The proposed simulation method has two key features. One is the particle 
representation of liquid regions, which makes it easy to treat the arbitrary deformation of liquid regions 
numerically. The other is a new type of element-byelement algorithm for solving the flow equations in 
time. Owing to this algorithm, the assemblage of any global matrices can be avoided in the present 
finite element formulation and the required computer memory is reduced sharply. The numerical 
results have demonstrated the usefullness of the present method. 
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Figure 17. Time histories of displacement and acceleration of block and pressure on block 
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